

Cell-less RAN and cooperative schemes for interference management

Technical Goals

Cellular

Manage interference through proper resource scheduling algorithms by central scheduler which be able to:

Updated

- Adjust to indoor scenario
- Adaptive to 5G architecture Adjust to traffic load variety
- Remove cell boundaries beside reaching the target Capacity

- Candidate Key Techniques:
- Adjusted CoMP Centralization

Optimization Approaches

Centralized RAN Controller

Scheduler

Indoor Scenario

Expand to outdoor massive MIMO scenario

Lobby

Interconnect

- AI/ML
- Virtualization

Traffic Fig Reference(modified): https://www.researchgate.net/figure/Variationsin-Traffic-on-Hourly-Basis-in-a-Day_fig2_251714340

Cellular Network

Conclusion

Cell-less radio access network (RAN), defined as a combination of:

Centralized RAN and cooperative radio resource management.

The goal:

Overcome interference.

approach the goal by:

changing the radio resource allocation paradigm from competitive to cooperative combined with the centralization of RAN.

Algorithms will be designed to manage the radio resources under this perspective.

Cell

less

Importants:

- Cooperative cluster forming Adaptive to 5G architecture
- Capacity
- Cooperative Radio Resource scheduling

Action List

1. Requiring Clarification: Network centric/user-centric Comp/cooperation-->dynamic clustering required adjustments Terminal Specifications

2. Algorithms Targeted: Cluster performing decision maker(UE/AP) Intra-building inter-floor interferences management Alg. Clustering Alg. Scheduling Alg. Requirements: Terminal Specifications Review

Scheduler Working Factor

3. Decisions to Be Made: RAN Controller Scheduler optimization concentration: Freq., Time, Space, Power, Hetnet, Roaming, RAT